куплю микроамперметр на переменное напряжение, механический т.к. работать будет в напряжениях от 50-70 кВольт
50-70 киловольт? Это тебе нужен промышленный вольтметр ("напряжометер" по твоему %) )
Переменное напряжение - это когда у напряжометра стрелка видать скачет Кончено переменное напряжение как термин существует, но носит это явление скорее негативный характер и чаще это не используют, а с этим борются (например стабилизаторами напряжения).
Переменным в ЭЦ бывает ток. А вот маленькие токи при больших напряжениях бывают. Это электропояса-массажеры, электрошокеры, сложные кинескопы ЭЛТ устройств, розжиг ламп в плазмах и т.п. Короче это ты так постебался?
ЗЫ. Микроамперметр все же существует. Но теория по КИПиА говорит нам следующее:
Микроамперметр предназначен для измерения и индикации малых постоянных токов (от нА до мкА) и может применяться как нуль-индикатор в мостах и потенциометрах постоянного тока.
Рассмотрим пример размещения микроамперметра в измерительных устройствах, таких как простой индикатор радиации:
На рисунке показана схема простого индикатора, фиксирующего даже слабые бета- и гамма-излучения. Датчиком (VL1) служит счетчик Гейгера-Мюллера типа СТС-5 отечественного производства, выпускаемый уже более тридцати лет.Он имеет вид металлического цилиндра длиной около 113 и диаметром 12 мм. Его рабочее напряжение 400 В. Из зарубежных датчиков можно использовать ZP1400,ZP1310 или ZP1320 фирмы Philips.
Прибор питается от одного гальванического элемента напряжением 1,5 В и потребляет ток не более 10 мА. Напряжение -12В для питания усилителя и высокое напряжение для питания датчика получают от преобразователя на транзисторе VT1. Трансформатор преобразователя Т1 намотан на броневом магнитопроводе диаметром около 25 мм. Обмотка 1-2 имеет 45 витков провода диаметром 0,25 мм, 3-4 - 15 витков того же провода, а 5-6 - 550 витков провода диаметром 0,1 мм. Начала обмоток на схеме отмечены точками.Преобразователь представляет собой блокинг-генератор. Возникающие на обмотке 5-6 трансформатора Т1 импульсы высокого напряжения выпрямляет высокочастотный диод VD2. Обычные выпрямительные диоды здесь непригодны,так как импульсы слишком коротки, а частота их повторения слишком высока. Пока излучения нет, на входе усилителя, выполненного на транзисторах VT2 и VT3, напряжение отсутствует и транзисторы заперты. При попадании на датчик бета- или гамма-частиц газ, которым он заполнен, ионизируется и на выходе формируется импульс, который возбуждает усилитель, и из громкоговорителя (телефонного капсюля) BF1 слышен щелчок, светодиод HL1 при этом вспыхивает.Вне зоны облучения щелчки и вспышки светодиода повторяются через 1 -2 с.Это реакция датчика на космическое излучение и естественный фон. Если приблизить датчик к излучающему предмету (старым часам со светящимся циферблатом или шкале авиационного прибора времен войны), щелчки участятся и,наконец, сольются в сплошной треск, а светодиод будет светиться непрерывно. Таким образом можно судить о частоте попадания частиц на датчик, а следовательно, об интенсивности излучения.
В приборе есть и стрелочный индикатор. Переменное напряжение, снимаемое с телефонного капсюля, через конденсатор С5 поступает на двухполупериодный выпрямитель на германиевых диодах VD3, VD4 (они могут быть любого типа).
Выпрямленное напряжение после сглаживания конденсатором С6 через переменный резистор R5 подается на микроамперметр (РА1). сопротивление резистора устанавливают таким, чтобы при сильном излучении стрелка микроамперметра не зашкаливала, а при слабом - заметно отклонялась. При необходимости прибор можно проградуировать, сравнивая его показания с измерителем излучения промышленного изготовления. Прибор собран на печатной плате, помещенной в коробку размерами 150х90х40 мм. Датчик размещен в отдельном корпусе и соединен с прибором кабелем с разъемом.Транзистор VT1 можно заменить на КТ630 с любым буквенным индексом, КТ315Б - на КТ342А. Светодиод может быть АЛ307, АЛ341. В качестве VD2 можно использовать два диода КД104А, соединив их последовательно. Диод КД226 можно заменить на КД105В. Телефонный капсюль следует выбрать с сопротивлением звуковой катушки не менее 50 Ом. Стрелочная измерительная головка может быть выбрана любого тина с током полного отклонения 50 мкА.
А вот более занимательный прибор, в котором визуализация результата измерений выполнена на базе микроамперметра: прибор оценки исправности конденсаторов.
Этот относительно простой прибор предназначен для оценки исправности конденсаторов названный автором микрофарадометр. Измерение емкости производится косвенно по значению напряжения пульсации, обратно пропорционального емкости периодически перезаряжаемого конденсатора. Данный прибор универсален и позволяет расширить диапазон измерений конденсаторов.
Предлагаемый прибор позволяет измерять с допустимой для радиолюбительских целей погрешностью емкость оксидных конденсаторов в интервале 5... 10000 мкФ, установленных непосредственно на монтажной плате, в блоках питания, т. е. без их выпаивания.
Рабочий диапазон измерения емкости разбит на три поддиапазона:
* "х 1" — 5...100мкФ;
* "х 10" — 50...1000мкФ;
* "х 100" — 500...10000 мкФ.
Принцип действия прибора основан на измерении напряжения пульсации на проверяемом конденсаторе Сх) которое возникает при его циклической зарядке от источника питания и разрядке на резистор. Чем больше емкость этого конденсатора, тем меньше будет напряжение пульсации. С другой стороны, при понижении частоты перезарядки напряжение пульсаций увеличивается.
Благодаря этим зависимостям и оказывается возможным определять емкость конденсатора в достаточно широком диапазоне значений параметра. Следует отметить, что замыкание в конденсаторе при такой методике измерения соответствует бесконечно большой емкости, а обрыв внутри конденсатора эквивалентен нулевой емкости (Сх= . Принципиальная схема прибора показана на рисунке 1.
На микросхеме DD1 собран генератор прямоугольных импульсов. Подключаемые с помощью переключателя SA1 подстроечные резисторы R1—R3 задают частоту импульсов генератора соответственно 1000, 100, 10 Гц.
Импульсы от генератора поступают на базу транзистора VT1, действующего как электронный ключ в цепи нагрузки (резистор R5 и емкость Сх измеряемого конденсатора) источника питания.
При отсутствии конденсатора на этом резисторе выделяются импульсы положительной полярности. Так как его сопротивление выбрано небольшим (9,1 Ом), то оказывается достаточным подать на транзистор VT1 напряжение питания около 1,5 В.
Эти импульсы после выпрямления диодами VD1, VD2 вызывают отклонение стрелки микроамперметра РА1.
При отсутствии конденсатора Сх переменным резистором R6 устанавливают стрелку микроамперметра на крайнее правое деление, которое в этом случае соответствует нулевому значению емкости Сх (обратная шкала). Конденсатор СЗ устраняет дрожание стрелки при работе генератора импульсов с частотой 10 Гц. Резистор R4 ограничивает ток коллектора VT1 при замыкании в измеряемом конденсаторе.
Как известно, интервал напряжения питания логических микросхем КМОП серии К561 достаточно широк — 3...15В, поэтому для питания микросхемы DD1 применен нестабилизированный преобразователь напряжения. Его схема с незначительными изменениями позаимствована из [1]. Это несимметричный мультивибратор на транзисторах разной структуры; его работа подробно описана в [2]. Этот преобразователь сохраняет работоспособность при весьма низком напряжении питания — до 0,8В.
Нагрузкой мультивибратора является трансформатор "П. Импульсы, вырабатываемые мультивибратором, наводят во вторичной обмотке напряжение, которое после выпрямления и сглаживания используется для питания микросхемы. Это напряжение примерно равно 4В, что вполне достаточно для нормальной работы устройства.
Конструкция и детали.
Микросхему К561ЛА7 можно заменить другой, например, К561ЛЕ5, диоды VD1—VD3 — германиевыми серий Д2, Д18. Транзистор VT1 (составной) возможно заменить другим с допустимым напряжением Uкэ max < 60В либо двумя отдельными транзисторами (например, КТ315Б и КТ817А).
Замена транзисторов VT2 и VT3 некритична, возможно, применение маломощных германиевых транзисторов соответствующей структуры, например, МП40—МП42 и МП37, МП38. Источник питания — гальванический элемент на 1,5 В к примеру типа 343.
Переключатель SA1 — например ПД21-1 или аналогичный миниатюрный, выключатель SA2 — любой малогабаритный. Ток полного отклонения стрелки микроамперметра — 50...200 мкА. В конструкции установлены импортные оксидные конденсаторы как самые малогабаритные, но можно использовать и отечественные К50-35.
Для трансформатора Т1 подойдет кольцо из феррита М2000НМ с внешним диаметром 10—20 мм. Первичная обмотка содержит 40 витков провода ПЭЛ или ПЭЛШО 0,12, вторичная обмотка — 100 витков такого же провода.
Прибор монтируют в корпусе подходящих размеров. На переднюю панель устанавливают микроамперметр, переключатель пределов SA1, выключатель питания SA2, переменный резистор R6 ("Устан. 0") и гнезда для подключения соединительных проводов.
Налаживание прибора
При проверке работоспособности прибора целесообразно начать с преобразователя напряжения. После подключения источника питания к прибору на выходе выпрямителя преобразователя должно быть напряжение около 4...4,5 В. Если генерация не возникает, следует поменять местами выводы любой из обмоток. Общий ток, потребляемый прибором от гальванического элемента, не превышает 50 мА.
Налаживание прибора заключается в установке соответствующих частот поддиапазонов генератора и градуировке микроамперметра. Настраивать генератор целесообразно с помощью частотомера, подключив его к выводу 10 микросхемы DD1. Подстроечными резисторами R1—R3 устанавливают генератор на частоты 1000, 100 и 10 Гц. Если применить переключатель SA1 на четыре положения, можно получить еще один предел измерения емкости — 0,5...10 мкФ, добавив в генератор еще один подстроечный резистор для установки частоты импульсов, равной 10 кГц.
Наиболее трудоемкой операцией является градуировка шкалы микроамперметра. Так как пределы измерения емкости кратны 10, достаточно одной общей шкалы. Градуировку прибора производят на первом поддиапазоне с помощью образцовых конденсаторов, емкость которых подобрана (допустимо и параллельное соединение двух-трех конденсаторов) с помощью измерителя емкости.
Если нет достаточно точных образцовых конденсаторов либо нет прибора для подбора емкости, то для градуировки можно использовать танталовые оксидно-полупроводниковые конденсаторы серии К53 (К53-1, К53-6А и др.). Емкость таких конденсаторов, по мнению автора, более стабильна во времени даже у экземпляров давнего года выпуска. Шкалу достаточно оцифровать значениями 0; 5; 10; 20; 30; 50; 100, а первую риску — знаком бесконечности (Ґ). Нулем будет отмечена правая риска (Сх = . При соответствующей кратности частот генератора точность градуировки шкалы для остальных поддиапазонов вполне удовлетворительна.
Практика использования измерителя ничем не отличается от методики работы с аналогичными приборами. Производить проверку оксидных конденсаторов надо в обесточенных устройствах, соблюдать полярность подключения не обязательно. Конечно, можно проверять конденсаторы и перед установкой на монтажную плату. Старые оксидные конденсаторы целесообразно перед проверкой отформовать, выдержав их под поляризующим напряжением в несколько вольт.
Так как на практике приходится проверять емкость оксидных конденсаторов непосредственно на печатных платах, покрытых лаком, то желательно изготовить щупы со стальными заостренными наконечниками. Для этого хорошо подходят цанговые карандаши, выпускавшиеся отечественной промышленностью. Вместо грифеля используют отрезок стальной проволоки диаметром до 2 мм, который вставляют в автокарандаш на всю длину с припуском 10 мм.
Ну и пожалуй самый интересный прибор легкомонтируемых на базе микроамперметра - это ПРИБОР ДЛЯ НАСТРОЙКИ KB АНТЕНН
При разработке этого измерительного прибора ставилась цель изготовить портативную простую конструкцию, обладающую достаточной точностью для практической настройки разнообразных KB антенн и имеющую автономное питание.
Прибор позволяет производить следующие измерения:
1. Определять резонансную частоту антенной системы а также резонансные частоты элементов в нее входящих (вибратора, директоров. рефлектора) в диапазоне 31...2.5 МГц.
2. Измерять активную составляющую входного сопротивления антенны в пределах от 0 до 5000м.
3. Измерять реактивные составляющие входного сопротивления антенны.
4. Судить о КСВ антенны, имея в виду отношение волнового сопротивления фидеры .о входному сопротивлению антенны.
5. Определять нужную длину фазосдвигающих линий с волновым сопротивлением этих линий до 500 Ом, а также коэффициенты укорочения коаксиальных кабелей и линий.
Определение всех параметров, кроме реактивного сопротивления, производится путем непосредственного считывания со шкал прибора. Величина реактивной составляющей высчитывается по общеизвестным формулам.
Прибор состоит из двух частей: высокочастотного моста и диапазонного генератора, объединенных в одну законченную конструкцию.
ВЫСОКОЧАСТОТНЫЙ МОСТ
Схема, изображенная на рис. 1, представляет собой классическую схему измерительного моста на сопротивлениях (в одном из плеч этого моста находится переменное сопротивление R1 с проградуированной шкалой). Имеется также-переменный конденсатор С1 емкостью 160 пф с проградуирован-ной шкалой, который с помощью двух закорачивающих перемычек может подключаться либо параллельно к переменному сопротивлению, либо к входу моста, что позволяет сбалансировать его при наличии комплексного сопротивления. По величине емкости переменного конденсатора можно вычислить величину реактивной составляющей нагрузки.
Мост балансируется с помощью микроамперметра на 50 мкА, который включается в диагональ. Для регулировки чувствительности служит переменное сопротивление R5, кроме того. с помощью тумблера SA1 параллельно микроамперметру РА1 включается шунтирующее сопротивление R6, загрубляющее чувствительность индикатора.
Монтаж высокочастотной части моста ведется максимально короткими отрезками голого луженого провода диаметром 1,5мм (см. фото)
ДИАПАЗОННЫЙ ГЕНЕРАТОР
Диапазонный генератор (рис. 2) перекрывает диапазон частот от 2,5 до 31 МГц.
Диапазонный генератор состоит из задающего генератора, собранного по схеме емкостной трехточки на транзисторе КП302А. С помощью переключателя контуры включаются в цепь затвора. Весь диапазон генератора разбит на пять поддиапазонов с целью получения четкой градуировки шкалы. Следующий каскад на транзисторе КП302А является истоковым повторителем и служит для согласования с оконечным каскадом генератора, собранного на транзисторе КТ606А.
В коллекторную цепь этого каскада включен широкополосный трансформатор на ферритовом кольце, с обмотки связи которого высокочастотное напряжение подается непосредственно на мост.
Для надежной работы моста напряжение на обмотке связи должно быть 1..Д В. Нагрузка обмотки составляет 100 Ом, хотя баланс моста достигается и при меньших напряжениях.
КОНСТРУКЦИЯ И ДЕТАЛИ.
Прибор собран на панели,которая размещается в ящике размером 290х215х78 мм. При монтаже прибора необходимо исключить паразитные наводки на мост от генераторе. Иначе нельзя будет добиться полного баланса моста при измерениях. Расположение деталей и монтаж показан на рис.3.
В качестве измерительного со-противления R1 необходимо ис-пользовать переменное безиндукционное сопротивление, имеющее надежный контакт ползунка с токопроводящей дорожкой. В данном приборе применено сопротивление с графитовым контактом ползунка.
Сопротивление R2 и R3 типа МЛТ необходимо подобрать с точностью до 1%. Переменный конденсатор С1 — с воздушным диэлектриком максимальной емкостью 160пф.Триммеры С2 и СЗ— тоже с воздушным диэлектриком.
Дроссели Др1 и Др2 — трехсекционные на керамическом основании. Можно применить любые дроссели с индуктивностью 1 ...2,5 мГ. Необходимо, чтобы они имели минимальную собственную емкость и не имели реэонансов в диапазоне частот генератора.
Микроамперметр РА1 — типа М4205. В диапазонном генераторе применен переменный конденсатор С1 емкостью 50 пф с воздушным диэлектриком, снабженный верньером.
Трансформатор Тр1 намотан тремя проводами по 9 витков в каждой секции на кольце ВЧ50 диаметром 14 мм.
НАЛАДКА.
Наладку прибора необходимо начать с генератора, имеющего минимум гармоник, так как наличие их ведет к ошибкам при измерениях.
Необходимо тщательно подобрать с помощью конденсаторов СЗ и С4 связь контура с транзистором VT1, а также подобрать режимы работы этого транзистора и VT2 и VT3.
После наладки диапазонного генератора приступают к наладке высокочастотного моста. Для этого к входу моста X1 подключают постоянное сопротивление 100..150 Ом, гнезда А—В и С— D при этом должны быть разомкнуты. Частота генератора может быть установлена любой, например, 15 МГц. Затем переменным сопротивлением R1 балансируют мост при максимальной чувствительности индикатора. Показания индикатора при этом могут отличаться от нуля. Затем, вращая триммер СЗ, добиваются точного баланса моста. При правильном монтаже и одинаковой величине сопротивлений R2 и R3 стрелка индикатора должна быть на нуле . Допустимы толь о весьма незначительные отклонения. Этой операцией нейтрализуется емкость
переменного сопротивления и емкость монтажа противоположных плеч моста. После этого вставляются перемычки А — В и С — D. а конденсатор С1 устанавливается в положение минимальной емкости. Не трогая сопротивления R1, триммером С2 снова добиваемся балансировки моста — на шкале конденсатора С1 отмечаем нулевую точку. Этой операцией нейтрализуется начальная емкость конденсатора С1. От нулевой точки градуируем шкалу конденсатора С1 через каждые 10 пф. На этом наладка завершается.
ПОЛЬЗОВАНИЕ ПРИБОРОМ.
Для измерения резонансных частот антенной системы и ее элементов, а также входного сопротивления, прибор подключается непосредственно к входу антенны коротким отрезком коаксиального кабеля. Если это затруднительно — полуволновым (для настраиваемого диапазона) отрезком кабеля.
Такая длина соединительного кабеля необходима, поскольку полуволновая линия передает параметры нагрузки без трансформации.
Для определения резонансной частоты антенны и ее входного сопротивления устанавливаем величину переменного сопротивления R1 равную приблизительно величине волнового сопротивления применяемого филера и, меняя частоту диапазонного генератора. находим частоту на которой индикатор покажет резкое уменьшение показаний.
Затем, изменяя величину сопротивления R1 и емкости С1. а также корректируя частоту генератора. добиваемся полной балансировки моста. Если мост сбалансировался при нулевом положении конденсатора С1, то это означает, что антенна на данной частоте имеет чисто активное входное сопротивление, которое считывается со шкалы сопротивления R I. Если же для баланса потребовалось изменение конденсатора С1, то это означает, что нагрузка имеет реактивную составляющую тем большую, чем большую емкость пришлось вводить при балансировке.
Если мост сбалансировался при соединении перемычками гнезд А—В и С— D, то это означает, что реактивная составляющая имеет емкостной характер. А если при соединении гнезд А — С и В — D — то индуктивный характер.
Резонансные частоты директоров и рефлектора измеряются аналогичным образом, но при этом нужно в широких пределах менять величину сопротивления R1 для нахождения резонансной частоты. Балансировка на этой частоте может быть не столь резкой. как при определении резонансной частоты антенны. Кроме того нужно иметь в виду. что при настройке антенн типа HB9CV. имеющих ям элемента, будут четко выражены три частоты: короткого элемента — с частотой выше рабочей, длинного элемента — с частотой ниже рабочей и резко выраженная рабочая частота антенны.
Кроме рабочей частоты антенны и ее основных элементов, возможно появление резонансных частот бума, оттяжек и т.п.
Для определения коэффициента укорочения коаксиальных кабелей и линий используется свойство полуволновой линии передавать величину нагрузки без трансформации. Поэтому берем отрезок кабеля или линии и закорачиваем накоротко один из концов. Другой конец включаем к входу моста, установив при этом на "0" сопротивление R1 и конденсатор С1. Найдя резонансную частоту, при которой мост сбалансируется, будем иметь в виду, что для этой частоты данная линия имеет электрическую длину в половину волны. Затем, пересчитав частоту генератора в длину волны, находим искомую половину волны. Измерив геометрическую длину отрезка кабеля или линии и вычислив ее отношение к данной полуволне получим коэффициент укорочения.
При этих измерениях нужно иметь в виду, что если применяется кабель большой длины, то может отмечаться несколько частот баланса. Разность между двумя соседними частотами и даст ту частоту, на которой данный отрезок линии имеет длину в полволны.
По полученному коэффициенту укорочения легко вычислить длину нужной фазосдвигающей линии, поскольку полуволновой отрезок линии сдвигает фазу не 180°.
К примеру, для сдвига фазы на 45°, необходимо взять четвертую часть от полуволновой линии и т.д.
GaPez я прекрасно понимаю куда можно применять приборы сам уже с 20 летним стажем в области по разработки электронных систем и програмирования! Так вот нужен мне именно микроамперметр для проверки утечек тока при пробоях напряжением в 70кВ , для простоты и нужен мне механический! Ну а так я понимаю что мудрить схемы можно но самодельные устройства не покатят в регистрациив техстандарте и энергонадзоре!
куплю микроамперметр на переменное напряжение, механический т.к. работать будет в напряжениях от 50-70 кВольт
У меня есть типа механический мультиметр. Может подойдёт. Фото сюда закинул: http://192.168.102.127:8080/%D1%81%D1%8E%D0%B4%D0%B0%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D1%81%D0%BA%D0%B8%D0%BD%D1%83%D1%82%D1%8C%20%D1%81%D0%BE%D1%84%D1%82/%D1%84%D0%BE%D1%82%D0%BA%D0%B8/P1020023.JPG
такой не пойдёт! нужно чисто микроамперметр, заводского типа без радиоэлементов! Что я могу сказать просто амперметр имеет ток отклонения стрелки 100 или 500 микроампера. по сути везде стоят шунты. Так что нужна просто рамка , но в корпусе чтобы имел марку ЭА0632, ЭА0633, ЭА0634,М1360 и хорошо бы переменного.
2GaPeZ:
на третьем рисунке сверху схема "Умного дома" судя по начертаниям линий...
в Строймаркете продается 800 р тока он в 4 раза больше обычного и меряет до 50 А.
не до 50 А мне не нужен , а нужен заводской микроампермер меряющий до 0-500мкА!
не до 50 А мне не нужен , а нужен заводской микроампермер меряющий до 0-500мкА!
Вот, достал 500 р. / обмен
не до 50 А мне не нужен , а нужен заводской микроампермер меряющий до 0-500мкА!
Вот, достал 500 р. / обмен
не до 50 А мне не нужен , а нужен заводской микроампермер меряющий до 0-500мкА!
Вот, достал 500 р. / обмен
где скрутил ?